本文结合数学史和人类文明史谈数学的起源。
数学演化的历史
动物也具有数学本能。
比如,蜜蜂建造的蜂巢,是严格的六角柱形体。它的一端是六角形开口,另一端则是封闭的六角棱锥体的底,由三个相同的菱形组成。这些蜂巢组成底盘的菱形的所有钝角都是109°28′,所有的锐角都是70°32′。后来法国数学家克尼格和苏格兰数学家马克洛林计算得知:如果要消耗最少的材料,制成最大的菱形容器正是这个角度。
图1
丹顶鹤迁徙总是成群结队,而且排成“人”字形。这“人”字形的角度永远是110°左右,如果计算更精确些,“人”字夹角的一半,即每边与丹顶鹤群前进方向的夹角为54°44′08″。按照这个队形,使得队伍中的丹顶鹤最省力。
同样地,人类从远古走来,最开始是猿,从猿进化到人。因此,人在生存发展的过程中,必然要产生基本的数量需求和位置需求。比如,人生存好要吃肉,吃肉就要捕猎,可捕猎是有风险,当然谁也不愿意受伤。那么,就要思考这一个月需要吃几头猪,并且不用冒更大的风险捕猎更多的猪。而这对应着基本的数量需求。
另外,我们要有住的地方,不能直接挨着狮群住,也不能离水源太远,还要考虑地势高低,不能一下雨,住的地方就成了水坑。这就对应着基本的位置需求。
这就产生了基本的数量需求和位置需求。
产生了这些东西之后就希望有一种描述,于是数学从这个时候开始产生,但是非常的初浅。比如说,一个原始社会的一个群落或者一个山洞,这个山洞里面我们到底有多少个人、我们打死了几只猴子、几只野猪等等这些东西都需要计量。再比如,我们还需要研究位置关系:我们所居住的山洞跟某一个河流构成了怎样的位置关系,跟某一个岔路口构成怎样的位置关系,当时这些问题都需要前人来解决。同时,我们还要解决场所的大小问题。比如说,我们这个山洞它究竟有多大,它究竟能够容纳多少人等等,这都是问题。这些问题发生了,于是人类开始产生最基本的东西。
比如说,最开始需要计量,于是产生了1、2、3、4等自然数。
为什么称之为自然数呢?
数学的定义都是经过严格推敲的,是要反映它的本质,给人以形象的理解。举个稍复杂点的概念——支集,具体的定义为:一个函数f定义在集合X上,其中X的一个子集,满足f恰好在这个子集上非0,那么,这个集合称为支集。这就好像X轴是地面,函数像人一样从地面上支撑起来。
因为它是从大自然中来,自然产生的。有了数量需求,就想着表示。从最开始,不同的人有不同的发展,因为他是自然发生的。我们最开始就产生自然数,利用这个东西来计量。我们想想人类最开始有数学需求的时候,那个时候又没有这些数字,于是那个时候只能弄一个小绳。比如说,我打死一只狍子,我在这个小绳上系个扣,我打死第二只再系第二个扣……
等回来之后酋长问我:你今天战果如何啊?我把那个小绳往外一掏,给你看这么多个扣。问我战果怎么样?你看有多少个小疙瘩,那么战果就有多少。所以那个时候人类生活是很不方便的,只能通过那些小疙瘩来计数。而后来,发明了数,虽然这事对我们今天来讲是很简单一件事,在那个时候来讲它极不简单。
当人们对数的认识变得越来越明确时,人们觉得有必要以某种方式来表达事物的这一属性,于是就产生了计数。最开始的是采用手指计数,一只手五根指头表示5以内的事物的集合,两只手就表示10以内的事物的集合。正如亚里士多德所言,我们今天十进制的广泛采用就源于人生来就有10根手指这样的解剖学结果。
随着人们对于数的需求越来越大,10以内的数已经不敷运用时,于是我们就出现了石子计数。但随之而又出现了一个很大的不便,计数的石子很难长久保存信息,容易出现丢失。所以随着发展又出现结绳计数和刻痕计数这两种计数方式,这打开了我们计数发展的新局面,是一个跨越式的前进。
例如,在美国自然史博物馆保存有古代南美印加部落用来记事的绳结:在一根较粗的绳子上栓系涂有颜色的细绳,再在细绳上打着各种各样的结,不同颜色和结的位置、形状表示不同的事物和数目。这种记事方法在秘鲁高原一直盛行到19世纪,而日本的琉球岛居民还仍然保持着结绳记事的传统,足见结绳记事对于人类发展的重要意义。计数系的出现使数与数之间的书写运算成为可能,在此基础之上初等算术在几个古老文明地区发展起来了。
图2
数1、2、3、4……我把它排成顺序,只要记其中一个就行,根本不必要重复。比如说,打死了八只狍子,1、2、3、4、5、6、7、8,我只要能说出“8”,大家就能明白什么意思。这就是最开始产生“数”。
但大家想想,在古代,那个时候还没有面积的概念,但是人们还要描述事物的大小,你们说怎么办?我们现在就模仿一下古人。假如说我们现在没有面积的概念,也没有尺寸的概念,要描述一下这块石板有多大怎么告诉我?最开始肯定用手臂比划一下。但如果再遇到两个情况就不好办了:一个情况是,这个石板远远比我的两个手臂宽,怎么办?长和宽都要超过手臂能比划的范围,怎么办?另一种情况是你在五里以外,发现这么一块石板,你又不能见我的面,要通过一个小孩,来转达我,怎么办?你可以想象很多种情况。在这个时侯就遇到困难。不要单说这么大的石头,还有的情况是:非常小,小的像一个小米粒那么大,然后跟我“恩恩恩”,以手做比划,我这么比划了半天,尤其是远的同学,你也没看明白什么意思,是吧?我在这里边,说,有一种黄色的米,你啥也看不到,就是说,太小了你看不出来,超过你双臂能比划的范围你也看不出来。在这个时侯,人类就想,我怎么描述它呢?于是有一天,终于想出来,用长和宽的关系来描述面积,用长宽高的关系来描述体积。所以大家想,这个世界,我们今天所描述的东西,都不是凭空而来的。
很多数学基本概念的定义确定了数学未来发展的形式。
面积表示着平方的概念,如果是一块面积。平方就是二维了,就涉及到以后的坐标系,并直接暗含着直角坐标系。如果,一开始面积表示不是平方,而是现在讲的菱形,那么,菱形坐标系该怎么表示?
图3 笛卡尔坐标系
其实呢,最开始借助的都是长乘宽。用长和宽相乘,用方的东西,不管是正方的,还是长方的,用一个方的东西定义了面积。但是以后即使不是方的,我也借助于方的来表达。所以,很多东西不是从来就是这样的。如果我们善于从哲学角度想问题的话,你将会发现,在这里不自觉地有这样一个坐标关系。借助于一个直角坐标关系。那就是说,说明这个角是直角。你这么定义面积。大家再想想,人类还可以换多种方式定义面积。比如说,现在的坐标轴都是这样的一个角度的坐标轴,不是90°,而是60°,60°的坐标的话,我仍然可以建立坐标,那么我仍然可以用60°的坐标这种关系建立面积的概念。如果人类最开始定义面积,用这种60°角(的坐标)来定义面积,那么你们可以想象,我们今天的数学就不是今天这个样子。所以数学它最后形成的形式,跟你最开始的定义方式是密切相连的。我们到了大学,让我们做这样一个不定积分,(sinx/x)的不定积分,觉得这个东西太难了。那么这个不定积分原函数我们在数学上怎么回答?原函数是存在的,但是我们不知道他如何表达,因此我们就说这个不定积分现在没有。事实上,我们后来真的学了积分之后,我们发现要描述它非常容易。为什么呢?因为我们只要在一个很小的范围内,我们把sinx进行泰勒展开。发现它就是这么一个关系,你只要把x跟它每一个除一下,它就变成了。我们发现把这个原函数找到,并且算一下计算就比较简单。我们只要找到了它,对它进行积分,就是一个幂函数积分,积出来还是个级数,非常简单。一个用积分表达,计算起来也并不复杂的东西,为什么我们通常表述就那么难呢?这就说明我们今天的数学是沿着一特定的思路来定义下来的,来演绎下来的。假如说现在我们定义面积,我们是按60°定义或者按30°来定义而不是按90°来定义的话,这个时侯,你重新算sinx/x这个积分的时候,可能一下子积出来,这是个非常简单的东西。而现在我们非常简单的东西,那个时候就有可能变得非常复杂的东西。我们有些从事数学的人,在一些具体问题上能够取得一定的成就,但是可以说,仍然处在一个“小家”的水平上,不能称之为大家。问题就在于他们并不能够用开阔的思想来思考数学,他们不知道数学为什么是这个形式,他们不知道数学未来将会是什么形式,他们不知道数学未来将怎样发生革命。像牛顿、莱布尼兹、庞加莱、克莱因等大数学家,他们都是有很深的数学史、数学哲学功底的。
我们最开始由于数量的需要,产生了数字。后来由于要解决位置的问题,产生了欧几里得平面几何。虽然中国人在古代并不知道欧几里得,但是中国人、希腊人和其他国家的人一样都需要解决这些实际问题。
与算术的产生相仿,最初的几何知识则是源于人们对于形的直觉中萌发出来的,史前人大概首先是从自然界本身提取几何形式,在器皿制作、建筑设计及绘画装饰中加以呈现。据研究,不同地区几何的产生有不同的历史背景。古埃及几何学产生于尼罗河泛滥后土地的重新丈量,古印度的几何学的起源则与宗教实践密切相关,而古代中国几何学的起源更多的与天文观测相联系,由此,我们也可以发现几何学的出现离不开我们生产生活的需要。
图4
一旦这些实际问题得到解决,对于我们现实生产生活是十分有益的。数字——自然数产生之后,我们想描述现实的情况变得有可能了。比如说,在我们这样一个小区域内有多少棵杨树呢,我们只要查一下,有27棵杨树。在一个小区域内有27棵杨树,我只要写这样一个数字就行了。注意,那个时候中国可没有这样一个数字,这是阿拉伯人发明的,阿伯人用这样一个方式来描述,我们中国人不用这个方式,中国人用一横两横来描述。阿拉伯人用这个“1、2、3、4、5……”来描述,罗马人用“Ⅰ、Ⅱ、Ⅲ、Ⅳ、Ⅴ……”来描述,而中国人用什么来描述呢?中国人用 “一、二、三、四、五……”。
不同的民族有不同的描述方式,别看这个描述方式看起来很简单,这里的问题比较复杂。我们想想为什么数学在西方比较发达?比如说像古希腊,罗马,后来的法国、英国、德国等等,为什么在这些国家,在西方率先发展起来了?为什么中国古代曾经有灿烂辉煌的数学,为什么近代没有发展起来呢?古罗马发展也受限制。一个很重要的原因是我们的数学表达形式太难了,或者用另一种说法叫没有及时符号化。用一个简单的例子,比如一千五百二十一加一千五百二十五,写成“1521+1525”,列竖式运算,非常方便,但是按照我们的文字表达,加起来很困难,其他运算也是如此。
未完待续。
本网页内容旨在传播知识,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:dandanxi6@qq.com